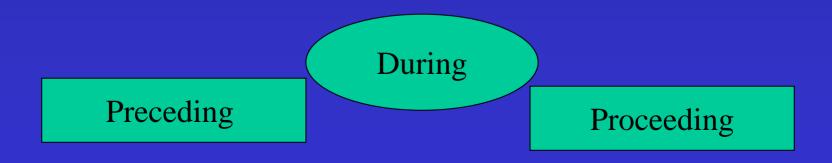


Biomonitoring Using Ecotoxicology

Jerry L. Farris Arkansas State University Environmental Sciences Program

Presented at the AWEA Lab/Pretreatment Session AWW&WEA Conference 2003 12th Annual AWEA Specialty Conference


PROBLEMS:

- 1. Type and degree of treatment
- 2. Flow from treatment plant
- 3. Characteristics of wastewater
- 4. Flow in receiving stream
- 5. Quality of receiving system
- 6. Amount/size of mixing zone
- 7. Uses of receiving waters

Time and space relations

• Events

- Spills, releases, catastrophe
- Predictions
 - Risk assimilation, transformation, etc.
 - Prominent or targeted use products
- Treatments
 - Recovery or condition

Understanding, Protection, Management & Use

Arkansas State University Environmental Sciences Program

 providing scientific investigations to quantify sustainability

Environmental Requirements

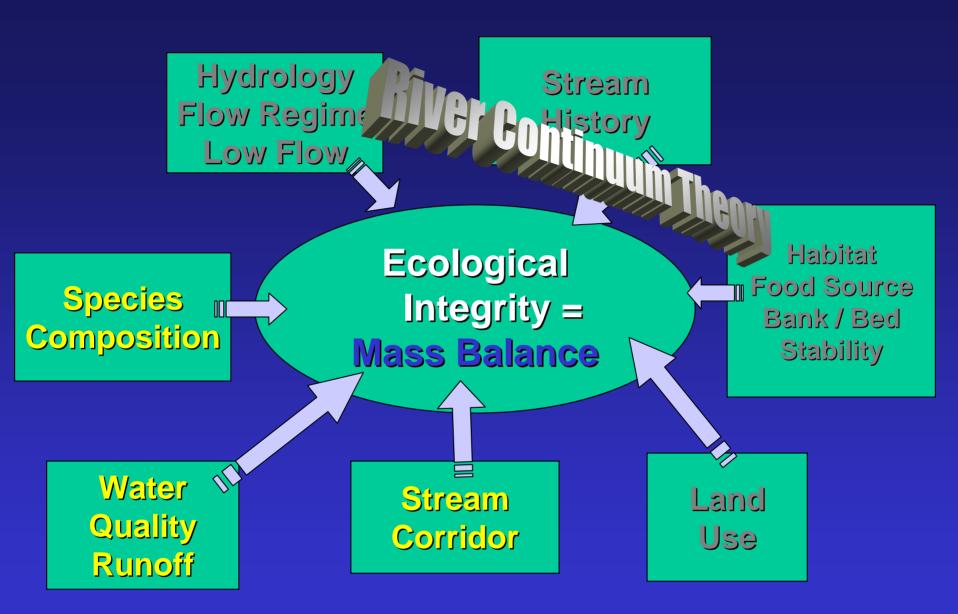
Presence of a species

Absence ≠ Significance

Monitoring Changes

- Population numbers
- Community composition
- Ecosystem function
- genetic composition
- bioaccumulation of toxicants
- endocrine function
- biomarkers

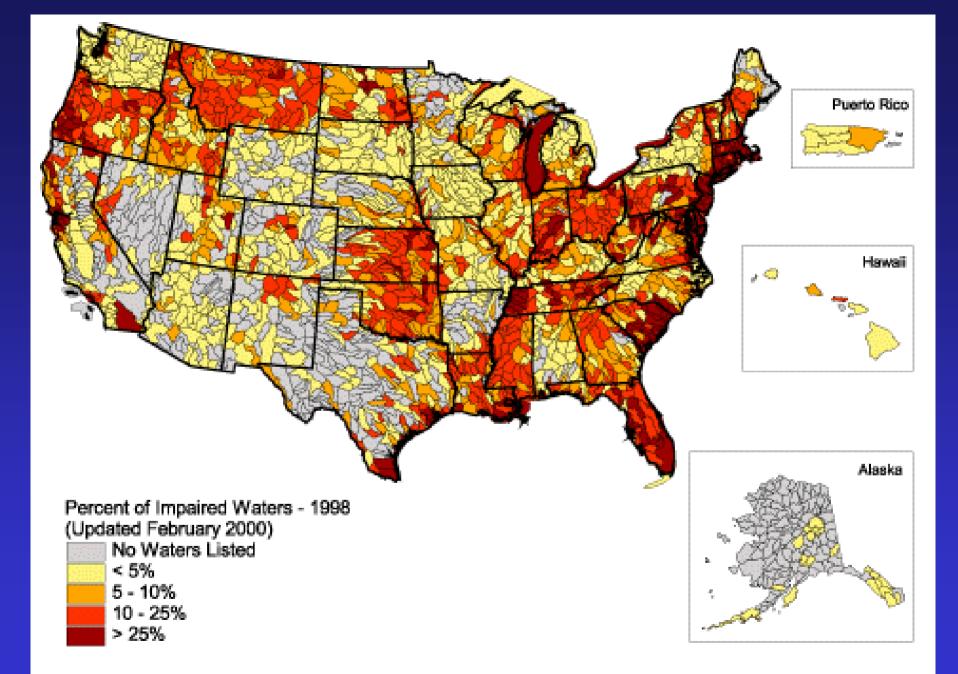
Water Quality Standards Waste Discharge Requirements


Downstream Protection

- Domestic water supply
- Agriculture water supply
- Stock & wildlife water
- Propagation of aquatic life
- Swimming/boating
- Aesthetics
- Navigation
- Industrial use

Environmental Health or Biological Integrity

- Biological monitoring
- Biomonitoring
- Toxicity testing bioassays
- Water quality monitoring
- Environmental surveillance
- Compliance monitoring


TMDLS

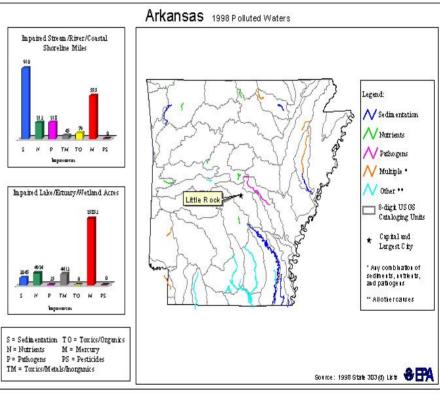
- TotalMaximum
- Daily
- Loads (Loadings)

TMDLS

TMDL = PS + NPS + MOS

PS = "POINT" SOURCE POLLUTION **NPS** = "NON-POINT" SOURCE POLLUTION **MOS** = MARGIN OF SAFETY

What is it?


- Part of the CWA (1972) requiring states to identify waters not meeting state water quality standards
- Developed every two years

What does it do?

- Essentially sets priorities for TMDL development
- Develop a TMDL for each pollutant, for each listed water

✓ 30 parameters

Arkansas vs. Mississippi

21	Siltation / Turbidity	474
20	Mercury	16
10	Nutrients	468
6	Pathogens	228
6	Chloride / Sulfide / TDS	24
3	"Heavy" metals	12
2	Ammonia	-
1	Priority organics	7
1	Organic Enrichment / low DO	391
-	Pesticides	429
-	Biological Impairment	57
-	рН	52
-	Suspended solids	10
-	Total toxics	9
-	Non-Priority organics	7

TMDL PROCESS--Arkansas

IMPAIRMENT

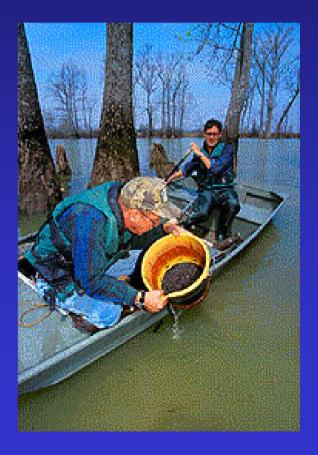
34.5%
34.5%
17.2%
6.9%
3.4%

Agriculture Unknown Municipal Industry Road const/main

Maintenance of Biological Integrity ~consideration of surrogates and reference systems~

Pimephales promelas

Community surveys
In-stream monitoring
Toxicity testing-bioassays
Compliance Monitoring (WET)



TMDL PROCESS--Arkansas

303 WATERBODIES (select from Eastern AR)

L'Anguille (Siltation and Pathogens)

Bayou DeView (Nutrients and Siltation)

Primary (1)

Habitat Descriptors

Riverine (5)

Evaluation codes related to ditch structure.

Ditch		Riparian	
Code	Size	Habitat	Water Regime
1	Primary	Bare	Dry
2	Secondary	Grass	Water, no flow
3	Tertiary	Brush/Shrub	Water, flow
4	Quartenary	Deciduous	Riverine
5	Riverine		

Toxicity Evaluation

Aqueous toxicity 48-h acute

- Ceriodaphnia dubia
- Pimephales promelas

Sediment toxicity 10-day acute

• Chironomus tentans

Benthic Macroinvertebrate Surveys

 US EPA Rapid Bioassessment Protocol

 Twenty jabs per 100-m reach

MONITORING TRADE OFF

Quality, Control, Accountab

diast.

Biomonitoring

• Why organisms?

Concentrate & integrate from water particulates & sediments --- tissues

- Why transplants?
- Why bioaccumulation?
- Why growth?
- Why biomarkers?

Experimental control & environmental realism

Integrated record of bioavailability

Ecological measurement, dose-response population effects

Flags of exposure, archived samples

What can municipalities do?

 Help lead recovery in systems listed for enforcement

 Participate in watershed groups giving stakeholders a chance to improve water quality before enforcement is necessary

TMDLs - Beyond the local watershed

Gulf of Mexico Hypoxia Work group discussion on how to implement basin-wide program to alleviate "problems"

The "Win-Win" strategy: *Relies on states performing TMDLs *Using conservation practices & BMPs *Elevates TMDLs to new heights of popularity

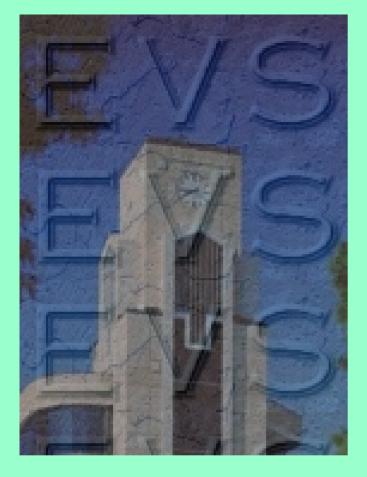
RESEARCH APPLICATIONS

Assimilative Capacity

Complex Effluents - WET

Additive Effects

Instream Monitoring


Site Variances

Life Stage Assessment

Propagation, Refuge, Recovery

Ongoing related projects

Demonstration Erosion Control Project USDA/ Corps Receiving Stream/ Reference Condition/ Evaluation Municipalities Validation of Improved Conditions/ Industry-specific Aquaculture Recovery Studies/ Long-term database development USDA/Industry Estimate of Ecosystem services/ Ditches Agriculture/EPA / NSF

PhD in Environmental Science

Environmental Chemistry

- Water-Rock Interactions
- Drinking Water Quality
- Environmental Method Dev.
- Climate Change
- Chemical Toxicology

Environmental Policy

- Urban Planning
- Environmental Economics
- Agri-Economics
- Environmental Justice

- Environmental Biology
 - Ecotoxicology
 - Ecology
 - Fisheries Management
 - Wildlife Management

Acknowledgments

- **ASU Ecotoxicology Research Facility**
- **ASU EVS and College of Sciences and Mathematics**
- **USDA National Sedimentation Laboratory**
- **Judd Hill Foundation**
- CLW, CWL, and other municipalities and regional industries

Research support

- American Electric Power Service Corporation, Columbus, OH
- Hoechst Celanese, Rock Hill, SC
- Virginia Fibers Corporation, Amherst, VA
- EVS Environment Consultants, Seattle, WA
- R&R Environmental Engineering, Toledo, OH
- Tennessee Department of Transportation
- HydroQual, Inc., Mahwah, NJ
- U.S. Army Corps of Engineers, Memphis District
- Jones, Day, Reavis and Pogue, Toledo, OH
- Parsons Engineering Science, Inc., St. Louis, MO
- E2M Engineering-Environmental Management, Inc., Tulsa, OK
- CWL, Jonesboro, AR
- CLW, Paragould, AR
- OMI, Inc. for City of Fayetteville, AR
- City of Rogers, AR
- Fritt Industries, Walnut Ridge AR
- City of Trumann, AR
- City of Springdale, AR
- Weyerhauser, Hot Springs, AR
- Boston-Dana, Paragould, AR
- FTN, Inc. Little Rock, AR